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Two methods are proposed, one for the location of  saddle points and one for the 
calculation of steepest-descent paths on multidimensional surfaces. Both 
methods are based on a constrained simplex optimization technique that avoids 
the evaluation of gradients or second derivative matrices. Three chemical re- 
actions of increasing structural complexity are studied within the PRDDO SCF 
approximation. Predicted properties of reaction hypersurfaces are in good 
overall agreement with those determined by gradient minimization and gradient- 
following algorithms in connection with various ab initio SCF methods. Com- 
putational efforts required by the new procedures are discussed. 

Key words: Constrained simplex optimization method for the location of saddle 
points - Constrained simplex optimization method for the calculation of 
steepest-descent paths on multidimensional surfaces 

1. Introduction 

A theoretical treatment of the chemical reactivity of a molecular system requires 
detailed knowledge about its potential energy in terms of all internal degrees of 
freedom. In general, this energy function is not available analytically but can be 
defined numerically point by point, e.g., by several presently available quantum 
chemical procedures. However, the number of internal degrees of freedom grows 
so rapidly with increasing complexity of the molecular system that the number of 
evaluation points necessary for sufficient resolution may reach astronomical 
dimensions even for molecules of rather modest size. The task may be considerably 
reduced if reaction paths can be located on the potential energy hypersurface. 
Evaluation points may then be restricted to those spanning a grid in the domain 
of such paths, suitable for a dynamical treatment of chemical reactivity. 

0040-5744/79/0053/0075/$03.80 



76 K. Mtiller and L. D. Brown 

There are different ways in which reaction paths can be obtained on the potential 
energy surface. Traditionally, some coordinate (reaction coordinate [1, 2], mapping 
parameter [3]) is defined along which the reaction is driven, while partial geometry 
optimization is performed with respect to the remaining degrees of freedom. As 
discussed elsewhere [2, 4, 5], reaction paths constructed in this way are by no 
means unique and even fail sometimes to be continuous. Alternatively, reaction 
paths are defined as minimum energy trajectories from saddle points to the adjoin- 
ing potential energy minima, following everywhere the negative energy gradient 
except at the saddle point, where the initial direction is parallel to the principal 
axis of negative curvature [6, 7]. While this definition guarantees unique reaction 
paths within a given coordinate system, such minimum energy paths still depend on 
the coordinate system and generally do not map onto themselves under a coordinate 
transformation [8]. If  mass-weighted Cartesian coordinates are used, gradient- 
following paths represent special solutions of the classical equations of motion for 
the nuclei [7, 9]. They define molecular relaxation processes under the conditions 
of infinitely slow nuclear motion and continuous dissipation of the nuclear kinetic 
energy. In general, this meaning is lost if minimum energy paths are calculated in 
other, particularly internal, coordinate systems that are not related to the mass- 
weighted Cartesian coordinates by an orthonormal transformation 1. Nevertheless, 
the location of minimum energy paths within a given coordinate system is of con- 
siderable interest. Such paths trace the valleys on the multidimensional energy 
surface and are thus well suited for its exploration. They are particularly useful 
in detecting local intermediates lying energetically below a specified transition state. 
Although not uniquely defined in physical terms, they may provide rough insight 
into the cooperation of various internal degrees of freedom of a reacting molecular 
system. Finally, such paths can be used to specify the domain for additional energy 
evaluations required in a dynamical treatment of chemical reactivity. 

By definition, minimum energy paths run between saddle points and local minima 
on the energy hypersurface. These points, unlike the paths between them, are 
uniquely defined, i.e. independently of the coordinate system. The location of 
energy minima on multidimensional surfaces can be performed routinely by various 
standard function optimization techniques [13]. By contrast, the theoretical 
determination of saddle points is considerably more difficult, and only a few 
methods have recently been advanced [4, 14-17]. One procedure consists in minimiz- 
ing the Euclidean norm of the energy gradient [4, 14, 15]. This technique is quite 
powerful provided that the gradient is analytically available [14, 18] and that a good 
estimate of the saddle point region can be made in advance. However, if the gradient 
is calculated by finite differences the number of energy evaluations may become 
excessive. Furthermore, there is no guarantee that minimizing the gradient norm 

i However, the physical meaning is retained if the path is defined to follow everywhere the 
vector g. VE, rather than the gradient VE itself, where g is the metric tensor, whose elements 
are given by g~ = ~e (SRi/8~)(SR~/8~ k) [I0, lll; R and ~: denote internal and mass-weighted 
Cartesian coordinates, respectively. For a special case, in which gradient-following paths remain 
invariant under a non-orthonormal transformation of the mass-weighted Cartesian to an internal 
coordinate system, see [12]. 
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converges to a saddle point, since all local minima and maxima on the energy 
surface also belong to the set of  possible solutions. To avoid this difficulty a modi- 
fied procedure has been proposed [15], making use of  the second derivative matrix 
of  the energy. Since repeated evaluations of  this matrix are required, a relatively 
high price is paid for the assurance of  proper convergence. Finally, the specification 
of the domain for the search of a saddle point is often quite difficult. Chemical 
intuition is not always a reliable adviser. Traditional searching techniques [1, 2] 
require a considerable amount of  energy calculations and yet may fail to locate the 
region for a saddle point [2, 4, 19] 2. The recently proposed "reference coordinate 
approach"  [19], which is based on an energy contour-following algorithm, rep- 
resents an interesting solution to this problem, but it requires evaluation of both 
the gradient and the second derivative matrix of  the energy and may be too ex- 
pensive for this purpose. A second procedure for the automatic location of saddle 
points, called the X-method [16], consists in a search for points where n linearly 
independent horizontal lines can be optimally fitted onto the surface of an n- 
parametric energy function. This method again tends to require an excessive 
number of  energy calculations [16] and appears to have been used only once in 
connection with a surface of a two-parametric energy function. Finally, the "syn-  
chronous transit me thod"  [17] has been proposed, in which the saddle point region 
is successively narrowed by generating linear and quadratic transit paths between 
limiting structures with partial geometry optimizations constrained to surfaces 
orthogonal to the paths. While this technique represents a promising alternative 
to the gradient minimization procedures, it is difficult to tell whether or not it 
could be used in an automatic fashion. 

Once a saddle point has been located, minimum energy paths can be calculated using 
the gradient-following technique developed by Ishida et al. [9] a. However, for each 
new point on the reaction path, this procedure requires evaluation of the energy 
gradient twice in addition to a geometry optimization orthogonal to the estimated 
path and thus may become rather expensive if the gradient is not analytically 
available. 

In this paper we propose two methods, one for the location of saddle points and 
one for the calculation of minimum energy paths. Both methods are based on a 

2 A particularly instructive example is provided in [24]. 
3 Alternative procedures for the calculation of minimum energy paths have been advanced 
in the recent literature [19-21l, all of which are based on the gradient or even the second 
derivative matrix of the energy. Their general applicability to multidimensional surfaces appears 
questionable. The "reference coordinate approach" [19] may fail to produce continuous paths. 
The method proposed by Panci~ [20] is based on the assumption that along the valley bottom 
the gradient remains parallel to one of the eigenvectors of the second derivative matrix. However, 
this is generally not the case for steepest-descent paths [11 ]. Test calculations on our analytical 
potential (Fig. 3) revealed that paths satisfying the above criterion tend to stay on or even climb 
up the valley walls [22]. The method by Largo-Cabrerizo [21] attempts to calculate gradient- 
following paths starting in the region of an energy minimum. It is difficult to see how this can be 
a stable process since, near the minimum, the steepest-descent line passing through the saddle 
point is an asymptote to other steepest-descent lines avoiding this point [I0]. 
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Fig. 1. Generation of an approximate path point Q between PI and P2 by energy minimization 
on the hypersphere h with radius r starting at the point S 

constrained simplex optimization technique that avoids the evaluation of gradients 
or second derivative matrices. The procedures are first described in context of an 
analytical two-parametric model potential. They are then applied to three chemical 
problems of increasing complexity: the isomerization of CNH to HCN, the SN2 
reaction involving H -  and CH~, and the rearrangement of vinylidene to acetylene, 
the energy calculations being performed within the non-empirical PRDDO SCF 
MO scheme [23] 4. These reactions have been investigated by others [9, 14, 15] using 
gradient minimization techniques in connection with standard ab initio SCF MO 
methods and thus provide ideal testing grounds for our procedures. 

2. Outline of the Basic Concept 

Given two points, P1 and P2, on a minimum energy path, a new point, Q, lying 
approximately on this path may be generated between P1 and P2 by minimizing the 
energy on a hypersphere, h, centered around the higher of the two points with 
radius r defined as a fraction, f < 1, of the distance d = IPIP21 (Fig. 1). Q will 
coincide with a point on the minimum energy path if the sphere intersects it at right 
angles. This is generally not the case for curved reaction paths. Nevertheless, Q will 
lie sufficiently close to the path if its curvature remains small between P~ and P2. 
Energy minimization starts at the intersection point S and is performed by means 
of the simplex method [25] with only the constraint that all evaluation points 
remain on the hypersphere h. Computational details are given in the appendix. 

3. Calculation of Minimum Energy Paths 

For the calculation of minimum energy paths, we identify the saddle point and an 
adjoining energy minimum with the starting points P1 and Pz, respectively. The 
radius r can be chosen sufficiently small so that the hypersphere h intersects the 

Slater exponents were used for all atomic orbitals, excepting hydrogen ls orbitals, for which 
exponents were set to 1.2. 
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Fig, 2. Calculation of an approximate minimum energy path by generation of a series of path 
points Q 

reaction path at approximately right angles. Energy minimization on h will then 
converge to a point, Q1, essentially on the minimum energy path. Application of 
the same procedure to Q1 and P2 generates the next point on the path, Q2, and so 
on. As a minor modification of the method, we take the starting point, S, for a 
subsequent energy minimization to be on the bisector, b, between Q,~P2 and the 
extension Q , _ I Q ,  rather than on Q , P 2  itself (Fig. 2). Generation of new points is 
continued until one of the following three conditions is satisfied. First, normal 
termination is indicated when the distance, d,, between a point Q, and the target 
point P2 falls below a preset threshold valueS. By then our method has produced 
a set of  equidistant points tracing a continuous path from the saddle point to the 
adjoining energy minimum. This path converges to the true minimum energy path 
with decreasing radius r, i.e. increasing number of  path points. Second, the pro- 
cedure is halted when a new point on the path is energetically higher than a previous 
one, indicating passage through a local intermediate. Unconstrained energy mini- 
mization is then performed to locate the proper position of this intermediate. Third, 
calculations are stopped if no energy minimum is found on the frontal hemisphere 
o fh  6, indicating movement  away from the target point P2. This situation may occur 
if P2 does not represent an energy minimum adjoining the saddle point under 
investigation. 

To illustrate the procedure we apply it to the surface of a two-parametric model 
potential 7 having three minima and two saddle points. Maps of equipotential 
curves are shown in Fig. 3. Since the gradient is analytically available, accurate 
minimum energy paths can be calculated without difficulties. They are indicated 

5 A threshold value of 1.2r has proved satisfactory. 
6 The frontal hemisphere includes all points on h for which the azimuthal angle, 0, with 
respect to the axis P1S  (Fig. 1) or Q , S  (Fig. 2) does not exceed ~r/2. 
7 The potential consists in a sum of four terms of the form A.exp [a(x - xo) 2 + b(x  - Xo) 
(Y  - Yo) + e (y  - y0)2], in which the constants take the following values: (A) = ( - 2 0 0 / -  100/ 
- 170/15), (a) = ( -  1 / -  1 / -  6.5/0.7), (b) = (0/0/11/0.6), (c) = ( -  10/- 10/- 6.5/0.7), (Xo) = 
(1/0/--0.5/-- 1), (Yo) = (0/0.5/1.5/1). 
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Fig. 3a and b. Series of path points (solid circles) generated in the calculation of minimum energy 
paths on the two-parametric model potential 7 using f =  1/6 (case a) and f =  1/11 (case b). 
Each series starts at a saddle point (triangle) and ends at an energy minimum (open circle) 

by the solid lines connecting minima with saddle points. Figures 3a and 3b show the 
results of our procedure when the radius r is set equal to, respectively, 1/6 and 1/11 
of the distance between a saddle point and an adjoining minimum. Deviations of 
the calculated points from the true minimum energy paths are evident in Fig. 3a. 
They are most pronounced in the upper section of  the contour map, where the 
reaction path is strongly curved. These deviations are quite systematic. In general, 
our procedure tends to underestimate the curvatures of gradient-following paths. 
On the other hand, an approximate doubling of  the number of path points is 
sufficient to reduce these deviations to the extent that, for practical purposes, the 
set of points can be regarded as a good approximation to the true minimum energy 
paths (Fig. 3b). 

4. The Location of Saddle Points 

To locate a saddle point between two energy minima, we generate valley points of  
increasing energy, closing in on the saddle point from opposite sides. Valley points 
are obtained by means of the general procedure outlined in Sect. 2 (Fig. 1), starting 
with the two energy minima as P1 and P2. A fixed value o f f  > 0.5 is used for the 
ratio of radius r to distance d so that the hypersphere h is most likely to encompass 
the saddle point region. Empirically, a ratio o f f  = 2/3 has proved satisfactory. 
Each time a valley point is generated, an energy/distance analysis is carried out to 
select a new (P1, P2) pair which is used in the search for the next valley point. The 
three typical situations which can occur in this analysis are schematically depicted 
in Fig. 4. P,  and P~ denote the two points between which the valley point Q was 
generated on the preceding cycle. The (P1, P2) pair for the next cycle is then deter- 
mined as follows. If  Q is of higher energy than both P,' and P~ (Fig. 4a), Q is taken 
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Fig. 4a-c. The three typical situations encoun- 
tered in the energy/distance analysis of the saddle 
point location procedure 

I - - ' "  i"--. 

.-'"' P~' o h 

as P1 and the more distant of its two neighboring points is used as P2. If  Q lies 
energetically between P~' and P~ (Fig. 4b), or if Q is below both P~' and P~ (Fig. 4c), 
the highest of the three points is selected as P1 with its more distant neighboring 
point as P2. The occurrence of a situation of the third kind (Fig. 4c) is taken as an 
indication for the existence of a local intermediate between the two original energy 
minima. While the search for one saddle point is continued, the low-lying valley 
point is flagged so that the surface around it can be explored at a later stage by 
unconstrained energy minimization. Valley points generated during the initial 
phase of the location process may deviate substantially from minimum energy paths 
because the searching radii are quite large at the beginning and reaction paths are 
rarely straight. However, in the course of closing in on the saddle point, the radii 
become progressively smaller and new valley points fall more and more closely on 
both minimum energy paths. Eventually, a situation of the first kind (Fig. 4a) is 
encountered in which the searching radius gets smaller than a preset threshold 
value, rmin. The saddle point is then sufficiently narrowed down so that it can be 
located simply by finding the highest point along the straight paths from P~ to Q 
and from Q to Ps To verify its saddle point nature, an energy minimization is per- 
formed in the subspace orthogonal to the straight path through the highest-energy 
point. The test is considered successful if this geometry optimization converges to 
the same structure within prespecified numerical accuracy. 

As an illustration we apply the procedure to the surface of the analytical, two- 
parametric model potential of the previous sectionL The parameters and energies 
of the two saddle points, as determined by minimizing the norm of the energy 
gradient, are given in Table 1. There are three minima on this surface, hence six 
possible ways in which the procedure can be applied, depending on the choice of 
the initial (P1, P2) pair~ In each case one of the two saddle points is correctly located 
within a desired numerical accuracy of about + 0.01 for each parameter 8 (Table 1). 

8 Calculations were performed with s .... = 0.01 (see appendix) and rmin = 0.04. 
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Table 1. Energy minima and sa~tdle points of the analytical, two-parametric model potential v 

Energy minima a 

E x y 

Minimum A - 146.700 -0.558 1.442 
Minimum B - 108.167 0.623 0.028 
Minimum C - 80.768 - 0.050 0.467 

Saddle points b 
E x y E x y 

-40.665 -0.822 0.624 -72.249 0.212 0.293 

Saddle points ~ 
Run (P1, P2) E x y E x y N d 

1 (A, B) -40.67 -0.82 0.62 - -  124 
2 (B, A) -40.68 -0 .82 0.62 - -  155 
3 (B, C) - -  - 72.26 0.22 0.29 74 
4 (C, B) - -  -72.27 0.21 0.30 73 
5 (A, C) -40.68 -0.81 0.62 - -  112 
6 (C, A) -40.67 -0.82 0.62 - -  113 

a Determined by unconstrained energy minimization using the simplex method [25]. 
b Determined by minimization of [VEI 2. 
~ Determined by the constrained simplex optimization procedure 8. 
d Total number of function evaluations. 

Valley poin ts  genera ted  in run  1 o f  Table  1 are d i sp layed  in the con tour  d iag ram of  

Fig.  5. 

The fol lowing features are typical  for the pe r fo rmance  o f  the  procedure .  Valley 
points  genera ted  early m a y  deviate  substant ia l ly  f rom m i n i m u m  energy paths.  
Nevertheless ,  they a l ready  p rov ide  a rough  insight into the course of  the reac t ion  
paths .  A t  a la ter  stage they represent  bet ter  pa th  points ,  approach ing  the saddle  
po in t  f rom oppos i te  sides. Only  one o f  the two saddle  poin ts  is located in this run.  
However ,  val ley po in t  4 is p roper ly  d iagnosed  to  fall into the  region o f  a local  inter-  

media te ,  the pos i t ion  o f  which is de te rmined  by uncons t ra ined  energy min imiza t ion  
s tar t ing a round  this point .  The second saddle  poin t  is then ob ta ined  by reapp l ica t ion  
o f  the loca t ion  p rocedure  using this local in te rmedia te  either as P1 or  P2 (runs 4 and 

3 o f  Table  1, respectively).  

F o r  p rope r  pe r fo rmance  of  the loca t ion  procedure ,  we must  ensure that ,  in each 
cycle, a new valley po in t  Q (Fig. 1) is located in the region between the points  P1 
and  P2 and not  beh ind  P1. However ,  under  cer tain c i rcumstances  there  is no energy 
m i n i m u m  on the f ronta l  hemisphere  o f  h 6 so that  an unl imi ted  search for it would  
inevi tably converge to an undes i red  valley poin t  on the  backside  of  P1. F igure  6 shows 
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Fig. S. The series of valley points generated in run 1 of Table 1 for the location of a saddle point 
on the two-parametric model potential7 

two typical situations where this problem may be encountered. In the first case (Fig. 
6a) an early generated point, which happens to fall into the saddle point region but 
not very close to the reaction path, is used as P1 at a later stage, when the searching 
radius is small. Energy minimization on h may then fall right through the saddle 
point. In fact, this occurred once during the location of a saddle point on the two- 
parametric model potential (Table 1, run 2). A simple remedy procedure proved 
quite effective in coping with situations of this type. It consists of finding the valley 
point Q by energy minimization in the subspace orthogonal to P1P2 through the 
midpoint MP (Fig. 6a). Both P1 and P2 are then eliminated from the list of valley 
points, and the location procedure is resumed at the energy/distance analysis for Q 
and its two neighboring points taken as P; and P~ according to Figs. 6a and 4a. In 
the second case (Fig. 6b) the location procedure is applied to two energy minima, 
between which there is no saddle point but only a ridge separating two divergent 
reaction valleys. Such a situation may occur on complicated multi-minima potential 
surfaces [26]. In the case at hand a short series of apparent valley points first simu- 
lates the existence of a saddle point. At a certain stage, however, suitable valley 
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Fig. 6a and b. Two typical situations where energy minimization on a hypersphere fails to locate 
a valley point in the region between P1 and P2. The performance of the remedy procedure is 
shown schematically 

points can no longer be located. Use of  the remedy procedure results in a long 
journey down the ridge to a point Q far removed from the region of the initial 
search. This point may be of value for further explorations of the potential surface, 
e.g., by application of  the location procedure to Q as one of two starting points or 
by means of unconstrained energy minimization around Q. 

5. The Isomerization of C N H  to H C N  

This reaction is of considerable chemical and theoretical interest and has been 
investigated by ab initio SCF calculations at various basis set levels [8, 9, 14]. It 
involves three degrees of freedom but is of sufficient structural complexity to serve as 
a test case for our procedures. Furthermore, the saddle point and minimum energy 
paths have been determined by gradient minimization [14] and gradient-following 
[9] algorithms, respectively, thus providing a valuable basis for comparison% 

Two distances, r(CN) and r(CH), and one angle, ~,(HCN), are chosen as indepen- 
dent parameters. Unconstrained energy minimization for the two isomers leads to 
the structural parameters shown in Table 2. They are in acceptable agreement with, 
if systematically larger than, bond lengths obtained from accurate ab initio SCF 
methods. The predicted exothermicity of the isomerization reaction is well within 
the range of  previous theoretical estimates. The location procedure may be applied 
in two different ways, depending on the choice of  the starting points P1 and P2. In 
either case one and the same saddle point is located within numerical errors of less 
than +0.005 A and +0.5 ~ Its structure and relative energy agree well with the 

9 PRDDO has been shown [23, 27] to reproduce closely the results of accurate ab initio SCF 
calculations using minimum basis sets. 
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Table 2. Properties of the C N H - - H C N  potential energy surface, predicted within the P R D D O  
approximation and by various ab initio SCF methods a 

P R D D O  STO-3G 4.-31G DZ-P b DZ-P/CI  b 
[141 [14] [81 [8] 

HCN ~ r(CN) 1.176 1.15 1.14 1.137 1.150 
r (CH) 1.093 1.07 1.05 1.062 1.066 
E~I 0 0 0 0 0 

CNH r(CN) 1.184 1.17 1.16 1.159 1.170 
r (NH)  1.020 1.01 0.98 0.986 0.996 
Erel 10.1 19.3 9.5 9.5 14.6 

saddle r(CN) 1.23 1.22 1.18 1.174 1.181 
point r (CH) 1.26 1.20 1.21 1.153 1.171 

y(HCN) 71.2 73.0 71.1 78.8 74.9 
E~el 62.9 69.2 67.1 49.7 49.5 

a Distances in /~ ,  angles in degrees, relative energies in kcal/mole. 
b Results calculated from the data given in [8]. 

Experimental values are r (CN) = 1.153/~ and r(CH) = 1.065 ,~ [28]. 
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Fig. 7a. Valley points generated for the location of the saddle point (open triangle) on the 
C N H - H C N  potential energy surface, b Complete isomerization path, traced by two sets of 
points obtained by application of the minimum energy path procedure to the saddle point 
(P1) and each of the two energy minima (P2) using f = 1/11 



86 K. Miiller and L. D. Brown 

results given in [14]. Valley points generated in the location run using CNtt as 
starting point P1 are shown in Fig. 7a. These points alone may suffice to characterize 
major portions of the isomerization path. The complete path is accurately traced 
by the two sets of points produced by the minimum energy path procedure when 
applied to the saddle point and each of the two isomers wi thf  = 1/11 (Fig. 7b). For 
infinitely slow motion the hydrogen atom starts and terminates on essentially 
circular paths centered around the nitrogen and the carbon atom, respectively, but, 
in between, proceeds more or less parallel to the CN bond. The isomerization is 
accompanied by a slight transitory lengthening of the CN bond, being most pro- 
nounced when the hydrogen atom moves alongside. Our predictions are in full 
harmony with previous results [8, 9]. 

6. The SN2 Reaction Involving H-  and CH4 

The saddle point of this reaction has invariably been shown to have a trigonal 
bypyramidal structure [9, 29-32]. The steepest-descent path leading from there to 
separated CH4 and H- has been calculated within the STO-3G minimum basis set 
approximation [9] and found to differ substantially from a reaction path obtained 
at a higher basis set level [30] but using one C--H distance as an arbitrary reaction 
coordinate. Assuming conservation of three-fold symmetry, the potential energy 
function is given in terms of four independent parameters, e.g. three CH distances 
and one HCH angle (Fig. 8). Starting with two symmetry-related configurations, 
structurally optimized with one CH distance maintained at 2.7 ~ (P1 and P2 in 
Fig. 8a), a saddle point of D3h symmetry is successfully located after generation of 
twelve valley points. The predicted CH bond lengths of 1.54 A and 1.10/~ for the 
axial and equatorial hydrogen atoms, respectively, are identical with those obtained 
by minimizing the energy of CH~ under the constraint of D3h symmetry 1~ The 
series of valley points provides a rough picture of the SN2 reaction path, which is 
accurately traced by the two symmetry-related sets of points produced by the mini- 
mum energy path procedure with f =  1/11 (Fig. 8b). Our path is in qualitative 
agreement with that following the negative gradient on the STO-3G potential energy 
surface [9]. 

7. The Rearrangement of Vinylidene to Acetylene 

This reaction was examined by Poppinger [15] as a test case for a saddle point 
location procedure based on an improved gradient minimization technique. 
Calculations were performed at the STO-2G level for an in-plane rearrangement. 
The same reaction has recently been studied at a double-~ and extended basis set 
level both with and without inclusion of electron correlation [37]. The overall 
agreement of our results with the various theoretical predictions (Table 3) is satis- 

lo These values are well within the ranges of 1.48-1.75/~ and 1.06-1.13/~ for r(CHa~) and 
r(CHea), respectively, as calculated by ab initio SCF methods at various basis set levels [9, 29- 
36]. 
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Fig. 8a. Valley points generated for the location of the saddle point (open triangle) on the 
H -  + CH~ SN2 potential energy surface 
b Sz~2 reaction path traced by the two sets of points obtained by application of the minimum 
energy path procedure to the saddle point (P1) and one of the two symmetry-related limiting 
configurations P2 u s i n g f  = 1/11. Dashed lines indicate parameter values for r2 = Go. Distances 
are in A, angles in degrees 
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Table 3. Properties of the H2C=C-HC~CH potential energy surface, pre- 
dicted within the PRDDO approximation and various ab initio SCF methods 
with partial inclusion of electron correlation ~ 

STO-2G DZ/SCEP PRDDO 
[151 [37] 

HC~CH (D~n) b r(CC) 1.178 1.230 1.204 
r(CH) 1.075 1.071 1.086 
Ere1 0 0 0 

H2C=C (C2~) r(CC) 1.316 1.342 1.323 
r(CH) 1.086 1.096 1.096 
~,(CCH) 121.4 121.1 121.8 
Ere~ 40.8 45.7 (40.0) a 24.3 

saddle point (Cs) ~ r(CC) 1.264 1.289 1.28 
r(CH1) 1.437 1.418 1.48 
r(CH2) 1.084 1.079 1.09 
~,(CCH1) 52.8 55.2 54.6 
y(CCH2) 178.2 176.1 174.7 
Erel 72.6 63.6 (48.6) a 66.8 

Distances in A, angles in degrees, relative energies in kcal/mole. 
b Experimental values are r(CC) = 1.203 A, r(CH) = 1.061/~ [28]. 

Structural parameters according to Fig. 9. 
a Energies in parentheses from extended basis set calculations with inclu- 
sion of electron correlation (DZ-P/SCEP) for selected points on the DZ/SCEP 
potential energy surface [37]. An exothermicity of 46 kcal/mole has been 
estimated based on generalized valence bond configuration interaction 
calculations [38]. 

factory. There are six degrees of  freedom, but only five structural parameters are 
required if Cs symmetry is imposed. They are chosen as shown in Fig. 9. Application 
of  the location procedure using either vinylidene or acetylene as starting point P1 
leads to one and the same saddle point within numerical errors of  less than + 0.005 A 
and + 0.5 ~ 8. This same saddle point is located without any symmetry assumption, 
i.e., with inclusion of  an out-of-plane angle, r (HCCH),  as the sixth independent 
parameter. Since both the saddle point and the two equilibrium configurations are 
planar, the rearrangement must take place within the common symmetry plane 
according to group theoretical arguments [39]. Indeed, the same set of  valley points 
(Fig. 9a) is generated by the location procedure, whether or not Cs symmetry is 
imposed. As noted in previous sections, these points alone provide a qualitatively 
correct picture of  the reaction path (Fig. 9b), which is obtained by application of the 
minimum energy path procedure to the saddle point and each of the two C2H2 
isomers u s i n g f  = 1/11. 

The path traced by the hydrogen atom, H1, moving around the CC unit, is strikingly 
similar to that found in the isomerization of C N H  to H C N  (Fig. 7b). The other 
hydrogen atom, H2, performs an oscillation as indicated by the arrow in Fig. 9b. 
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Fig. 9. a Valley points generated for the location of the saddle point (open triangle) on the 
H2C=C--HC~CH potential energy surface, b Complete rearrangement path, traced by two 
sets of points obtained by application of the minimum energy path procedure to the saddle 
point (P1) and each of the two equilibrium configurations (P2) using f = 1/11 

Our results suggest that the rearrangement starts out along the antisymmetric in- 
plane bending coordinate of vinylidene. After passage through the saddle point, 
the hydrogen atom H2 swings back while H1 continues to move ahead so that the 
reaction path terminates along an asymptote to the centrosymmetric bending of 
acetylene. 
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8. The Computational Effort 

Having demonstrated the successful performance of the new procedures, a few 
comments are in place concerning their efficiency. Of  course, any generalization 
should be taken with care since the complexity of  a potential energy surface may 
vary dramatically from one reaction to the other. Moreover, the total number of 
energy evaluations depends not only on the desired numerical accuracy but also on 
the starting conditions for the location of a saddle point and on the density of path 
points for the description of a minimum energy path. To ease comparison all saddle 
points were determined to the same level of  accuracy, 0.005 A for distances and 
0.5 ~ for angles 8, always starting from two equilibrium structures or, as in the S~2 
reaction, from two sufficiently distant limiting configurations. Likewise, minimum 
energy paths were determined uniformly by sets of  at least ten path points ( f  = 
1/11), calculated within numerical errors of  less than 0.002 A and 0.2 ~ for distances 
and angles, respectively. With these prerequisites an empirical relationship between 
N, the total number of  energy calculations needed for the location of a saddle 
point, and n, the number of internal degrees of  freedom, is found (Fig. 10), which is 
approximately given by 

N = l l .5n(n  + 3). 

Essentially the same relationship is also obtained for the total number of  evaluation 
points used in calculating a minimum energy path. Evaluation of the gradient and 
the second derivative matrix of the energy by finite differences requires a minimum 
of, respectively, (n + 1) and 0.5(n + 1)(n + 2) energy calculations. Hence, assum- 
ing that gradients are not analytically available, the computational effort involved 
in obtaining a saddle point or a minimum energy path by one of the new procedures 
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Fig. 10. Total number of energy evalua- 
tions, N, required for the location of a 
saddle point (solid circles) and for the 
calculation of a minimum energy path 
(open circles), plotted against n, the number 
of internal degrees of freedom. The re- 
lationship N = 11.5 n (n + 3) is shown by 
the solid line. Also included is N for n = 9, 
obtained in a preliminary study of the 
HaNO--H2NOH potential energy surface 
[221 
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is roughly equivalent to 11.5(n + 2) calculations of the gradient or 23 evaluations 
of the second derivative matrix. For minimum energy paths this effort appears to be 
comparable to that of the gradient-following algorithm of Ishida et al. [9], at least 
for surfaces of moderate dimensionality. The effort required by the saddle point 
location procedure seems to be somewhat excessive at first sight. However, this is 
due to the fact that location is started at two equilibrium configurations. If a good 
estimate of the saddle point region can be made in advance, two more closely lying 
configurations may be used as starting points P~ and P2. In this way the number of 
evaluation points is dramatically reduced. On the other hand, starting from energy 
minima has definite advantages: it allows us to locate saddle points in a chemically 
unbiased way, requiring knowledge only about equilibrium structures. At the same 
time, it provides us with a set of valley points which, in many cases, may be quite 
adequate for a qualitative description of reaction paths. 

Appendix 

Computational details are given for the constrained simplex optimization pro- 
cedure. 

The independent structural parameters R~ (i = 1, 2 . . . .  , n), specifying a molecular 
system, are taken to span a Euclidean n-space. The dimensions for bond distances 
and angles are Bohrs (=  0.529 A) and radians, respectively. This choice provides a 
scaling which has proved advantageous in geometry optimizations. The method for 
constrained energy minimization is outlined with reference to Fig. 1. A regular 
(n - l)-dimensional simplex is set up by an n x n matrix P", the rows of which 
hold the vector components for each of the points Ps (k = 1, 2 , . . . ,  n). P" is given 
by 

P" = T.  U + v. O)  

The transformation matrix U, obtained by the method of Powell [40], defines a 
Cartesian coordinate system with one axis parallel to P~P2. The matrix Tgenerates a 
regular (n - 1)-dimensional simplex within the subspace orthogonal to this dis- 
tinguished axis. The row vector v shifts the simplex centroid from the origin to 
point S. Projection of all points P~' onto the hypersphere h according to (2) yields 
the set of points P~. 

P~ = x . P ~  + (1 - x ) . P 1  for k = 1 , 2 , . . . , n  

x = [P1Sr/ tP~P;t  (2) 

They define the starting simplex for the constrained optimization procedure, which 
differs from the original simplex algorithm [25] only by the fact that any newly 
generated point is projected onto h according to (2) prior to an energy evaluation. 

Let the size of a simplex be defined by s, the rms distance between the centroid Pc 
and the corner points P~ (3), 

( ~  / \1/2 
s = IPT;P~t2/n} �9 (3) 
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Convergence  is indica ted  when s falls be low a preset  threshold  value soonv. Deter -  
mina t ion  o f  the app rox ima te  min imum energy pos i t ion  then includes bo th  the  
centroid  and  the corner  points .  Values o f  0.01 and 0.003 have been used for Soonv in 
saddle  po in t  locat ions  and min imum energy pa th  calculat ions,  respectively.  The  
number  of  eva lua t ion  points  needed for convergence depends  cri t ical ly on the size, 

so, of  the s tar t ing simplex. Numer ica l  experience has shown so = 1/51P1SI to be 
quite app rop r i a t e  in bo th  types o f  calculat ions.  
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